Introduction to Multigrid Methods

نویسنده

  • LONG CHEN
چکیده

0 = x0 < x1 < . . . xN < xN+1 = 1, xj = jh, j = 0 : N + 1, where h = 1/(N + 1) is the length of each subinterval. Let φi be the hat basis function at xi for i = 0 : N + 1. For a linear finite element function v = ∑N i=1 viφi, we denote by v = (v1, . . . , vN ) the vector formed by the coefficients. The boundary nodes (i = 0, N + 1) are excluded due to the homogenous Dirichlet boundary condition. We consider the algebraic system of a scaling of finite element or finite difference discretization

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Introduction to Algebraic Multigrid

Algebraic multigrid (AMG) solves linear systems based on multigrid principles, but in a way that only depends on the coefficients in the underlying matrix. The author begins with a basic introduction to AMG methods, and then describes some more recent advances and theoretical developments.

متن کامل

Introduction to Multigrid Methods for Elliptic Boundary Value Problems

We treat multigrid methods for the efficient iterative solution of discretized elliptic boundary value problems. Two model problems are the Poisson equation and the Stokes problem. For the discretization we use standard finite element spaces. After discretization one obtains a large sparse linear system of equations. We explain multigrid methods for the solution of these linear systems. The bas...

متن کامل

Multigrid Algorithms for Optimal Engineering Computations

Multigrid methods are becoming increasingly popular within engineering software and this chapter provides a general introduction to the topic, including a short survey and selected case studies. The main concepts behind the multigrid approach are introduced and the key multigrid algorithms are described. A discussion of some of the most significant applications of multigrid for the solution of ...

متن کامل

HANDBOOK OF THEORETICAL AND COMPUTATIONAL NANOTECHNOLOGY Real-space electronic-property calculations for nanoscale structures

This article gives an introduction to the real-space, multigrid-based progam package, designed in particular for electronic-structure calculations of low-symmetry nanometer-scale quantum structures. We give a short account of the history of real-space methods, introduce the idea of multigrid acceleration techniques, and present a generalisation of the Rayleighquotient minimization multigrid met...

متن کامل

Introduction to Finite Element Methods on Elliptic Equations

1. Poisson Equation 1 2. Outline of Topics 3 2.1. Finite Difference Method 3 2.2. Finite Element Method 3 2.3. Finite Volume Method 3 2.4. Sobolev Spaces and Theory on Elliptic Equations 3 2.5. Iterative Methods: Conjugate Gradient and Multigrid Methods 3 2.6. Nonlinear Elliptic Equations 3 2.7. Fast Multiple Method 3 3. Physical Examples 4 3.1. Gauss’ law and Newtonian gravity 4 3.2. Electrost...

متن کامل

Local Multilevel Methods for Adaptive Nonconforming Finite Element Methods

In this paper, we propose a local multilevel product algorithm and its additive version for linear systems arising from adaptive nonconforming finite element approximations of second order elliptic boundary value problems. The abstract Schwarz theory is applied to analyze the multilevel methods with Jacobi or Gauss-Seidel smoothers performed on local nodes on coarse meshes and global nodes on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011